Polynomial maps with strongly nilpotent Jacobian matrix and the Jacobian conjecture
نویسندگان
چکیده
منابع مشابه
Jacobian Conjecture and Nilpotent Mappings
We prove the equivalence of the Jacobian Conjecture (JC(n)) and the Conjecture on the cardinality of the set of fixed points of a polynomial nilpotent mapping (JN(n)) and prove a series of assertions confirming JN(n).
متن کاملNilpotent Symmetric Jacobian Matrices and the Jacobian Conjecture Ii
It is shown that the Jacobian Conjecture holds for all polynomial maps F : k → k of the form F = x + H , such that JH is nilpotent and symmetric, when n ≤ 4. If H is also homogeneous a similar result is proved for all n ≤ 5. Introduction Let F := (F1, . . . , Fn) : C → C be a polynomial map i.e. each Fi is a polynomial in n variables over C. Denote by JF := (i ∂xj )1≤i,j≤n, the Jacobian matrix ...
متن کاملHessian Nilpotent Polynomials and the Jacobian Conjecture
Let z = (z1, · · · , zn) and ∆ = ∑n i=1 ∂ 2 ∂z i the Laplace operator. The main goal of the paper is to show that the wellknown Jacobian conjecture without any additional conditions is equivalent to the following what we call vanishing conjecture: for any homogeneous polynomial P (z) of degree d = 4, if ∆P(z) = 0 for all m ≥ 1, then ∆P(z) = 0 when m >> 0, or equivalently, ∆P(z) = 0 when m > 3 2...
متن کاملPolynomial Automorphisms and the Jacobian Conjecture
In this paper we give an update survey of the most important results concerning the Jacobian conjecture: several equivalent descriptions are given and various related conjectures are discussed. At the end of the paper, we discuss the recent counter-examples, in all dimensions greater than two, to the Markus-Yamabe conjecture (Global asymptotic Jacobian conjecture). Résumé Dans ce papier nous pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1996
ISSN: 0024-3795
DOI: 10.1016/0024-3795(95)00095-x